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Abstract

The signature is a fundamental homotopy invariant for oriented manifolds.
However, for spaces with singularities, this usual notion of signature ceases to
exist, since spaces with singularities fail the usual Poincaré duality in general.
A generalized Poincaré duality theorem for spaces with singularities was proven
by Goresky and MacPherson using intersection homology. The classical signa-
ture was then extended to Witt spaces by Siegel using this generalized Poincaré
duality. In this paper, we study the higher signatures of Witt spaces by using
noncommutative geometric methods.

1 Introduction

The signature is a fundamental invariant for oriented manifolds. The Hirzebruch sig-
nature theorem expresses the signature of an oriented manifold M in terms of charac-
teristic classes:

sig(M) = 〈L(M), [M ]〉 ∈ Z,
where L(M) ∈ H∗(M ;Q) is the L-class of M , a certain power series in the Pontrjagin
classes. Since the definition of the signature only depends on the cohomology ring
of the manifold, it is clearly a homotopy invariant. Now suppose M is not simply
connected with π1(M) = Γ. Let BΓ be the classifying space for Γ and f : M → BΓ be
a continuous map. For each cohomology class [x] ∈ H∗(BΓ;Q), one has the following
characteristic number, called a higher signature:

sig[x](M, f) = 〈L(M) ∪ f ∗[x], [M ]〉 ∈ Q.

The Novikov conjecture states that every higher signature is homotopy invariant, that
is, for all orientation preserving homotopy equivalences g : N → M of closed oriented
manifolds and all continuous maps f : M → BΓ,

sig[x](M, f) = sig[x](N, g ◦ f).
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†Email: xie@math.tamu.edu; partially supported by the US National Science Foundation.
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This conjecture has been proved for a large class of groups [16, 11, 10, 25, 18, 19, 29,
30, 17, 9]. A common theme of the proofs for most of these cases, where the Novikov
conjecture is known to hold, is to first show the so-called strong Novikov conjecture
by using noncommutative geometry methods. Then the original Novikov conjecture
follows as a consequence of the Strong Novikov conjecture. Recall that the strong
Novikov conjecture says the following map, called the Baum-Connes assembly map,

µ : KΓ
i (EΓ)→ Ki(C

∗
r (Γ))

is injective, where i = 0, 1. Here EΓ is the universal space for proper Γ-actions, and
KΓ
i (EΓ) is the i-th Γ equivariant K-homology of EΓ. Roughly speaking, every K-

homology class in KΓ
i (EΓ) can be represented by a Dirac type operator on some closed

manifold. What the assembly map µ does is to map each of these Dirac type operators
to its corresponding K-theoretical higher index.

When the assembly map is applied to the signature operator of a manifold, we
call the resulting K-theoretical higher index the higher signature index class of the
manifold. The higher signature index class is one of the most fundamental invariants
for studying manifolds. In this paper we shall study a generalization of this invariant
for a class of spaces with singularities, Witt spaces. The case where the fundamental
group of the underlying Witt space is trivial has been studied by Siegel [24], based
on the work of Goresky and MacPherson [12]. This case was also studied with an
analytic approach by Cheeger [7, 8]. More recently, by generalizing Cheeger’s work,
Albin, Leichtnam, Mazzeo and Piazza used an analytic approach to study the higher
signature index class for Witt spaces[2] (see also [3] for the higher signature index class
of Cheeger spaces).

In this paper, we shall take a conceptual and combinatorial approach to the higher
signature index class for Witt spaces, by using noncommutative geometric methods.
Our approach is very much inspired by the work of Higson and Roe on mapping surgery
exact sequence in topology to analytic exact sequence in K-theory [14, 15, 13]. The
main methods of the paper are a combination of the techniques from the original
approach of Goresky, MacPherson and Siegel [12] [24], and techniques from noncom-
mutative geometry.

Here is a brief summary of the main results in the paper. Suppose X is a pseu-
domanifold (see Section 2.1). Let T be a triangulation of X. We denote the first
barycentric subdivision of T by T ′. Consider the stratification of X given by the
skeleton of T ,

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.

Define Rp̄
i to be the subcomplex of T ′ consisting of all simplices which are (p̄, i)-

allowable with respect to this stratification, where p̄ is a certain perversity (see Section
2.2). Let W p̄

i (X) be the subgroup of CT ′
i (Rp̄

i ) consisting of those simplicial i-chains
with boundary supported on Rp̄

i−1. We define W i
p̄(X) = Homfin(W p̄

i (X),C) the group
of finitely supported (p̄, i)-allowable simplicial i-cochains. We denote the correspond-
ing chain complex by (W p̄

∗ (X), b) and (W ∗
p̄ (X), b∗) respectively. The following theorem

states that, if X is an oriented Witt space, then X naturally gives rise a geometrically
controlled Poincaré complex (see Theorem 3.14 below).
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Theorem 1.1. Every n-dimensional oriented Witt space X is a geometrically con-
trolled Poincaré pseudomanifold of dimension n, that is, the duality chain map P :
(W ∗

m̄(X), b∗)→ (W m̄
n−∗(X), b) associated to the fundamental class [X] is a chain equiv-

alence in the geometrically controlled category. Here m̄ is the lower middle perversity.

We refer the reader to Section 2.5 and Definition 3.8 for the precise definitions of
various terms.

The theorem above allows us to define the higher signature index class for Witt
spaces. More precisely, Suppose X is a closed oriented Witt space of dimension n.
Let X̃ be a Γ-covering over X that is determined by a continuous map f : X → BΓ.
Here BΓ is the classifying space of Γ. Consider the following analytically controlled
Γ-equivariant Hilbert-Poincaré complex (see Section 2.4 and Section 4 for details):

Em̄
0 (X̃)

b←− Em̄
1 (X̃)

b←− · · · b←− Em̄
n (X̃),

where Em̄
i (X̃) is the Hilbert space completion of W m̄

i (X̃). We denote the associated
higher signature index class in Kn(C∗r (Γ)) by sigΓ(X, f) (cf. Section 2.4). Once casted
in this framework, then the following invariance properties of the higher signature follow
immediately from the general machinery for Hilbert-Poincaré complexes [13, Section 4
and Section 7].

Theorem 1.2. (i) Higher signatures of Witt spaces are invariant under Witt cobor-
dism. More precisely, suppose X1 and X2 are two closed oriented Witt spaces
with continuous maps f1 : X1 → BΓ and f2 : X2 → BΓ. If X1 and X2 are
Γ-equivariantly cobordant, then

sigΓ(X1, f1) = sigΓ(X2, f2)

in Kn(C∗r (Γ)), where n = dimX1 = dimX2.

(ii) Higher signatures of Witt spaces are invariant under stratified homotopy equiva-
lence. More precisely, X and Y are two closed oriented Witt spaces, and f : Y →
BΓ is a continuous map. If ϕ : X → Y is a stratified homotopy equivalence, then

sigΓ(X, f ◦ ϕ) = sigΓ(Y, f).

Here we refer to Definition 4.6 for the definition of stratified homotopy equivalence.
Now a natural question is to compare the higher signature index class defined in this

paper with the (analytic) higher signature index class in the paper of Albin, Leichtnam,
Mazzeo and Piazza [2]. In this case where the fundamental group is trivial, these two
definitions of the signature index are clearly equivalent. It is reasonable to conjecture
that the two definitions of the higher signature index class are always equivalent in
general. One possible way to prove this is to build a natural chain isomorphism from
the Poincaré complex of `2-differential forms (with certain constraints coming from the
singularities) in [2] to the Hilbert-Poincaé complex in the current paper.

The paper is organized as follows. In Section 2, we recall various basic definitions
and fix some notation. In Section 3, we associate naturally to each Witt space a
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Poincaré complex of certain allowable simplicial chains. The main result of this section
is to prove that such a construction is geometrically controlled. In Section 4, we
define the higher signature index class for Witt spaces and prove its various invariance
properties.

2 Preliminaries

In this section, let us recall some basic definitions and fix some notation.

2.1 Pseudomanifolds

In this paper, all spaces are assumed to be piecewise linear (abbreviated to p.l. from
now on), unless otherwise specified. We first recall the definition of pseudomanifold.

Definition 2.1. (1) A pseudomanifold of dimension n is a locally compact space X
containing a closed subspace Σ with dim(Σ) ≤ n − 2 such that X − Σ is an n-
dimensional oriented manifold which is dense in X.

(2) A stratification of a pseudomanifold X is a filtration by closed subspaces

X = Xn ⊃ Xn−1 = Xn−2 = Σ ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0

such that for each point p ∈ Xi −Xi−1 there is a filtered space

V = Vn ⊃ Vn−1 ⊃ · · · ⊃ Vi = a point

and a mapping V ×Bi → X which, for each j, takes Vj×Bi p.l. homeomorphically
to a neighborhood of p in Xj. Here, Bi is the p.l. i-ball and p corresponds to the
point Vi × (an interior point of Bi) .

If Xi −Xi−1 is nonempty, then it is a (usually open) manifold of dimension i, and
is called the i-dimensional stratum of the stratification.

We also have the following definition of pseudomanifold with boundary.

Definition 2.2. An n-dimensional pseudomanifold with boundary is a pair of pseudo-
manifolds (X, Y ) satisfying:

(1) Y is a pseudomanifold of dimension (n− 1) with singular set ΣY .

(2) Y is a closed subspace of X. If we denote the singular set of X by ΣX , then
X − (ΣX ∪ Y ) is an n-dimensional oriented manifold which is dense in X.

(3) Y is collared in X, that is, there is a closed neighborhood N of Y in X and an
orientation preserving p.l. homeomorphism Y × [0, 1]→ N which takes ΣY × [0, 1]
onto ΣX ∩N .

Now we recall the definition of stratification for pseudomanifolds with boundary.
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Definition 2.3. A stratification of an n-dimensional pseudomanifold with boundary
(X, Y ) is a filtration by closed subspaces

X = Xn ⊃ Xn−1 = Xn−2 = Σ ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0

such that

(1) the filtration of Y given by Yj−1 = Xj ∩ Y stratifies Y ;

(2) the filtration of X − Y given by Xj − Yj−1 stratifies X;

(3) these filtrations respect the collaring of Y in X, that is, the collaring homeomor-
phism takes Yj−1 × [0, 1] to Xj ∩N .

2.2 Piecewise linear chains and intersection homology

Suppose X is an n-dimensional pseudomanifold with a fixed stratification. If T is a
triangulation of X, let CT

∗ (X) be the chain complex of simplicial chains of X with
respect to T .

Definition 2.4. The chain complex C∗(X) of all piecewise linear geometric chains is
the direct limit under refinement of CT

∗ (X), with T ranging over all triangulations of
X compatible with the p.l. structure.

For ξ ∈ CT
i (X), the support of ξ, denoted by |ξ|, is the union of the closures of the

i-simplices whose coefficients in ξ are not zero. The support of ξ is invariant under
refinement. Therefore, a chain in C∗(X) has a well-defined support.

Definition 2.5. A perversity is a sequence of integers p̄ = (p2, p3, · · · , pn) such that
p2 = 0 and pk+1 = pk or pk + 1.

The minimum perversity is given by 0̄ = (0, 0, · · · , 0) and the maximum perversity
is given by t̄ = (0, 1, 2, · · · , n− 2).

Definition 2.6. Given an integer i and a perversity p̄, a subspace Y ⊂ X is called
(p̄, i)-allowable, if dim(Y ) ≤ i and dim(Y ∩Xn−k) ≤ i− k + pk for all k ≥ 2.

The following lemma will be useful in later sections. Let us denote the i-dimensional
stratum of the stratification by χi = Xi −Xi−1.

Lemma 2.7 (cf. [23, Chapter I, Section 2]). A subspace Y ⊂ X is (p̄, i)-allowable if
and only if dim(Y ) ≤ i and dim(Y ∩ χn−k) ≤ i− k + pk for all k ≥ 2.

Definition 2.8. C p̄
i (X) is the subgroup of Ci(X) consisting of those chains ξ such that

|ξ| is (p̄, i)-allowable and |∂ξ| is (p̄, i− 1)-allowable.

Now we are ready to define intersection homology of perversity p̄.

Definition 2.9. The i-th intersection homology group of perversity p̄, denoted IHp̄
i (X),

is the i-th homology group of the chain complex C p̄
∗ (X).
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Recall that the fundamental class of a pseudomanifold is defined to be the unique
class [X] ∈ Hn(X) which restricts to the local orientation class in Hn(X,X − p) for
every p ∈ X − ΣX . The Poincaré duality map is defined to be the cap product with
this fundamental class

_ [X] : Hn−i(X)→ Hi(X).

In general, this map is not necessarily an isomorphism, since X is singular. In any
case, there are compatible homomorphisms

Hn−i(X)
αp̄−→ IHp̄

i (X)
ωp̄−→ Hi(X)

which factor the Poincaré duality map [12, Section 1.4]. Here the map ωp̄ : IHp̄
i (X)→

Hi(X) is induced from the inclusions C p̄
∗ (X) ⊂ C∗(X), and we will recall the detailed

description of the map αp̄ : Hn−i(X)→ IHp̄
i (X) in Section 3.

Let p̄, q̄ and r̄ be perversities such that p̄+q̄ ≤ r̄. Then there is a unique intersection
pairing [12, Section 2.3]:

∩ : IHp̄
i (X)× IHq̄

j(X)→ IHr̄
i+j−n(X).

We have the following fundamental theorem of intersection homology due to Goresky
and MacPherson [12, Section 3.3].

Theorem 2.10 (Generalized Poincaré Duality). Let ε : IHt̄
0(X) → Z be the aug-

mentation which counts points with multiplicity, where t̄ is the maximal perversity
(0, 1, 2, · · · , n− 2). If i+ j = n and p̄+ q̄ = t̄, then the augmented intersection pairing

IHp̄
i (X)× IHq̄

j(X)→ IHt̄
0(X)→ Z

is nondegenerate after tensoring with the rationals Q.

2.3 Special simplicial chain complexes for Pseudomanifolds

In this paper, we need to work with chain complexes in the geometrically controlled
category. In particular, instead of working with the chain complex C p̄

i (X) above, it is
more suitable for us to work with certain simplicial chain complexes. We recall these
simplicial chain complexes in this subsection (cf. [12, Remark 3.4] and [23, Section 5
of Chapter 1]).

Given a pseudomanifold X, let T be a triangulation of X. We denote the first
barycentric subdivision of T by T ′. Consider the stratification of X given by the
skeleton of T ,

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.
Define Rp̄

i to be the subcomplex of T ′ consisting of all simplices which are (p̄, i)-
allowable with respect to this stratification.

Now let W p̄
i (X) be the subgroup of CT ′

i (Rp̄
i ) consisting of those simplicial i-chains

with boundary supported on Rp̄
i−1. In particular, W p̄

∗ (X) is a subcomplex of C p̄
∗ (X).

Moreover, W p̄
∗ (X) satisfies the following two properties:

(1) The inclusion i : W p̄
∗ (X)→ C p̄

∗ (X) induces an isomorphism on homology.

(2) If p̄ ≤ q̄, then there is a natural inclusion of chain complexes W p̄
∗ ↪→ W q̄

∗ .
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2.4 Hilbert-Poincaré complexes

In this subsection, we recall the definition of Hilbert-Poincaré complexes, which are
fundamental for studying higher signatures of topological spaces. We refer to [13] for
more details.

Let A be a unital C∗-algebra. Consider a chain complex of Hilbert modules over A:

E0
b1←− E1

b2←− · · · bn←− En

where the differentials bj are bounded adjointable operators. The j-th homology of
the complex is the quotient space obtained by dividing the kernel of bj by the image
of bj+1. Note that, since the differentials need not to have closed range, the homology
spaces are not necessarily Hilbert modules themselves.

Definition 2.11. An n-dimensional Hilbert-Poincaré complex (over a C∗-algebra A)
is a complex of finitely generated Hilbert A-modules

E0
b1←− E1

b2←− · · · bn←− En

together with adjointable operators T : Ep → En−p such that

(1) if v ∈ Ep, then T ∗v = (−1)(n−p)pTv;

(2) if v ∈ Ep, then Tb∗(v) + (−1)pbT (v) = 0;

(3) T induces an isomorphism from the homology of the dual complex

En
b∗n←− En−1

b∗n−1←−− · · ·
b∗1←− E0

to the homology of the complex (E, b).

Now we will associate to each n-dimensional Hilbert-Poincaré complex an index
class, called signature, in the K-theory group Kn(A).

Definition 2.12. Let (E, b, T ) be an n-dimensional Hilbert-Poincaré complex. We
denote l to be the integer such that

n =

{
2l if n is even,

2l + 1 if n is odd.

Define S : E → E to be the bounded adjointable operator such that

S(v) = ip(p−1)+lT (v)

for v ∈ Ep. Here i =
√
−1.

It is not hard to verify that S = S∗ and bS + Sb∗ = 0. Moreover, if we define
B = b + b∗, then the self-adjoint operators B ± S : E → E are invertible [13, Lemma
3.5].
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Definition 2.13. (i) Let (E, b, T ) be an odd-dimensional Hilbert-Poincaré complex.
Its signature is the class in K1(A) of the invertible operator

(B + S)(B − S)−1 : Eev → Eev

where Eev = ⊕pE2p.

(ii) If (E, b, T ) is an even-dimensional Hilbert-Poincaré complex, then its signature is
the class in K0(A) determined by the formal difference [P+]− [P−] of the positive
projections of B + S and B − S.

2.5 Geometric Hilbert-Poincaré complexes

In this subsection, we recall the definition of geometric Hilbert-Poincaré complexes.
They are Hilbert-Poincaré complexes in the geometrically controlled category.

Definition 2.14. A simplicial complex X is of bounded geometry if there is a number
N such that each of the vertices of X lies in at most N different simplices of X.

Denote by C∗(X;C) the space of finitely supported simplicial chains on X, with
complex coefficients. If no confusion arises, we shall write C∗(X) instead of C∗(X;C)
for notational simplicity. Each vector space Ck(X) has a natural basis, comprised of the
k-simplices in X. With respect to this basis, we complete Ck(X) into the Hilbert space
Ek(X) of square integrable simplicial k-chains on X. It is a X-module in the following
natural way: if f is a continuous function vanishing at infinity and if c =

∑
cσ[σ] is a

square integrable k-chain, then we define

f · c =
∑

f(σ̂)cσ[σ]

where σ̂ is the barycenter of σ. The simplicial differential b : Ck(X) → Ck−1(X)
extends to a bounded operator on `2-chains, and we obtain a complex of Hilbert spaces

E0(X)
b1←− E1(X)

b2←− · · · bn←− En(X).

We call this complex the `2-chain complex of X, and we call its adjoint

E0(X)
b∗1−→ E1(X)

b∗2←− · · · b∗n←− En(X)

the `2-cochain complex.
In the case where the simplicial complex X is given by a triangulation of an ori-

ented manifold, the above `2-chain and `2-cochain complexes will naturally give rise to
a Hilbert-Poincaré complex [14, Section 4]. However, since we are dealing with pseudo-
manifolds in this paper, we need an `2-version of the simplicial complex from Section
2.3.

Suppose X is an n-dimensional pseudomanifold. Given a perversity p̄, let W p̄
∗ (X)

be the simplicial chain complex from Section 2.3. Fix a basis, consisting of min-
imal elements, for W p̄

k (X), and complete it to the Hilbert space E p̄
k(X) of square-

integrable (p̄, k)-allowable chains whose boundaries are square-integrable (p̄, k − 1)-
allowable chain. Thanks to the bounded geometry of X, the simplicial differential
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b : W p̄
k (X) → W p̄

k−1(X) extends to a bounded operator to b : E p̄
k(X) → E p̄

k−1(X).
Given a pseudomanifold, the complexes

E p̄
0(X)

b1←− E p̄
1(X)

b2←− · · · bn←− E p̄
n(X)

and

E p̄
0(X)

b∗1−→ E p̄
1(X)

b∗2←− · · · b∗n←− E p̄
n(X)

do not give rise to a Hilbert-Poincaré complex in general. We shall see later that, if
X is a Witt space and p̄ = m̄ the lower middle perversity, then the above complexes
together with a natural Poincaré duality map define a Hilbert-Poincaré complex.

In order to have a suitable Poincaré duality map, we need to control our chain
complexes and the maps between them in a geometric way.

Definition 2.15. Let X be a proper metric space. A complex vector space V is
geometrically controlled over X if it is provided with a basis B ⊂ V and a function
c : B → X with the following property: for every R > 0, there is an N <∞ such that
if S ⊂ X has diameter less than R then c−1(S) has cardinality less than N .

Definition 2.16. A linear map T : V → W is geometrically controlled over X if

(1) V and W are geometrically controlled;

(2) the matrix coefficients of T with respect to the given bases of V and W are uni-
formly bounded;

(3) and there is a constant K > 0 such that the (v, w)-matrix coefficients is zero
whenever d(c(v), c(w)) > K.

Example 2.17. In this paper, the main example of a vector space geometrically con-
trolled over X is the space W p̄

k (X) of “allowable” simplicial chains of a triangulated
pseudomanifold X. Here we always choose a basis B = {µi} consisting of mini-
mal elements for W p̄

k (X) (see Appendix A for details). Each minimal element µi of
W p̄
k (X) is supported on the star of some vertex vµi in X. In particular, the function

c : B → X is defined by c(µi) = vµi . It is not difficult to see that the differential
b : W p̄

k (X) → W p̄
k−1(X) is a geometrically controlled linear map. Similar remarks

apply to the complex of finitely supported simplicial cochains.

3 Geometric Hilbert-Poincaré complexes associated

to Witt spaces

In this section, we carry out a natural construction of geometric Hilbert-Poincaré com-
plex for Witt spaces.

Given a pseudomanifold X, let T be a triangulation of X. Recall the construction
of W p̄

i from Section 2.3. Denote the first barycentric subdivision of T by T ′. Consider
the stratification of X given by the skeleton of T ,

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.
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Define Rp̄
i to be the subcomplex of T ′ consisting of all simplices which are (p̄, i)-

allowable with respect to this stratification.

Definition 3.1. W p̄
i (X) is defined to be the subgroup of CT ′

i (Rp̄
i ) consisting of those

simplicial i-chains with boundary supported on Rp̄
i−1.

Suppose dimX = n, then we have the following chain complex:

W p̄
0 (X)

b←− W p̄
1 (X)

b←− · · · b←− W p̄
n(X).

Denote the group of finitely supported (p̄, i)-allowable simplicial i-cochains byW i
p̄(X) =

Homfin(W p̄
i (X),Z) and the corresponding cochain complex by

W n
p̄ (X)

b∗←− W n−1
p̄ (X)

b∗←− · · · b∗←− W 0
p̄ (X),

where b∗ is the dual of b.
Now let T ′′ be the first barycentric subdivision of T ′ and let σ̂ denote the barycenter

of the simplex σ ∈ T ′. Let T ′i be the i-skeleton of T ′, thought of as a subcomplex of
T ′′. Observe that T ′i is spanned by all vertices σ̂ such that dim(σ) ≤ i. Define the
codimension i coskeleton Di to be the subcomplex of T ′′ spanned by all vertices σ̂ such
that dim(σ) ≥ i. There are canonical simplicial deformation retracts:

X − |T ′i | → |Di+1| and X − |Di+1| → |T ′i |.

Indeed, T ′i and Di+1 are spanned by complementary sets of vertices. Each simplex
in T ′′ is the join of its intersection with |T ′i | and of its intersection with |Di+1|. The
deformation retracts are given by retractions along the join lines.

Recall the definition of the usual cap product from algebraic topology. Suppose ϕ
is a finitely supported p-cochain, and σ = [v0, v1, · · · , vp+q] is a (p + q)-simplex, then
the cap product ϕ _ σ is the q-chain defined by

ϕ _ σ = ϕ([vp, · · · , vp+q])[v0, · · · , vp];

we extend by linearity to a product between cochains and chains. Moreover, the cap
product is related to the boundary and coboundary maps by the following standard
formula

b(ϕ _ σ) = ϕ _ (bσ)− (−1)|ϕ|(b∗ϕ) _ σ

Remark 3.2. Although the formula of the (simplicial) cap product involves a choice of
a partial ordering of all vertices (within a given orientation class), the cap product is
independent of the partial ordering of vertices.

Let CT ′
i (X) (resp. CT ′′

i (X)) be the group of simplicial i-chains of T ′ (resp. T ′′).
Recall that the inclusion CT ′

i (X) ↪→ CT ′′
i (X) is a geometrically controlled chain ho-

motopy equivalence. For a detailed proof, see for example [20, Theorem 17.2]. In
particular, let us choose a chain homotopy inverse of this inclusion and denote it by
gi : CT ′′

i (X)→ CT ′
i (X).
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Suppose Ci
T ′(X) = Homfin(CT ′

i (X),Z) is the group of finitely supported i-cochains
of T ′. Let [X] be the fundamental class of X. We define the following variant of the
cap product map

Ci
T ′(X) = H i

c(|T ′i |, |T ′i−1|)

_[X]

��

Hn−i(X − |T ′i−1|, X − |T ′i |)
∼= deformation retract
��

Hn−i(|Di|, |Di+1|)

induced by inclusion
��

Hn−i(|T ′′n−i|, |T ′′n−i−1|) = CT ′′
n−i(X)

gi
��

CT ′
n−i(X)

where H i
c stands for cohomology with compact support and gi is a chain homotopy

inverse of the inclusion CT ′
i (X) ↪→ CT ′′

i (X).

Remark 3.3. The map _ [X] above is a simplicial version of the cap product defined
by Whitehead [26].

We denote the composition of the above maps by

P : Ci
T ′(X)→ CT ′

n−i(X).

Notice that for any m-simplex ξ ∈ T ′, we have dim(|Di| ∩ |ξ|) ≤ m − i. Therefore,
dim(|Di| ∩ Xn−k) ≤ n − i − k. So all simplices in Di are (0̄, n − i)-allowable. Recall
that

b(ϕ _ [X]) = (−1)|ϕ|+1(b∗ϕ) _ [X]

for all simplicial cochains ϕ, where b and b∗ are the boundary and coboundary maps.
It follows that, for all ϕ ∈ Ci

T ′(X), we have P(ϕ) ∈ W ¯̀
n−i(X) for every perversity ¯̀. In

particular, P restricts to a map

P : W i
p̄(X)→ W

¯̀

n−i(X)

for all perversities p̄ and ¯̀. Moreover, by construction, the map P is geometrically
controlled.

From now on, we shall work with W i
p̄(X) ⊗ K where K = Q or C. If no confusion

arises, we write W i
p̄(X) instead of W i

p̄(X) ⊗ K for simplicity. Observe that, if we

identify W i
p̄(X) with W p̄

i (X) by the canonical inner product, then the dual map of

P : W n−i
¯̀ (X)→ W p̄

i (X) can be viewed as a map

P∗ : W i
p̄(X)→ W

¯̀

n−i(X).

To summarize, we have the following lemma.
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Lemma 3.4. Let X be an oriented pseudomanifold of dimension n and [X] be the
fundamental class of X. Then the map P : W i

p̄(X)→ W
¯̀
n−i(X) defined by

Pϕ = ϕ _ [X]

is geometrically controlled and satisfies bPϕ = (−1)|ϕ|+1Pb∗ϕ. Moreover, the geometri-
cally controlled chain maps P and (−1)|ϕ|(n−|ϕ|)P∗ are chain homotopic (in the geomet-
rically controlled category).

Proof. Only the last statement requires comment. The only essential difference between
the chain maps P and (−1)|ϕ|(n−|ϕ|)P∗ is the different choices of partial ordering of
vertices. Suppose we denote the partial ordering of vertices chosen for P by

σ = [v0, · · · , vn]

for each simplex σ ∈ [X]. Then the partial ordering of vertices in the formula for P∗
is given by σ̄ = [vn, vn−1, · · · , v0] by reversing all the vertices for each σ ∈ [X]. To be
more precise, since we need to preserve the orientation, a sign ought to be inserted.
Let us define a map ρ : CT ′

i (X)→ CT ′
i (X)

ρ(α) = εiᾱ

for all α ∈ CT ′
i (X), where εi = (−1)(i+1)i/2. It is not difficult to verify that

(−1)|ϕ|(n−|ϕ|)P∗(ϕ) = ϕ _ (ρ[X]).

Recall that the definition of cap product does not depend on the partial ordering of
vertices. Moreover, there is a geometrically controlled chain homotopy between _ [X]
and _ (ρ[X]). To see this, it suffices to show that reversing two consecutive vertices
gives rise to a cap product that is chain homotopic to the original one. That is, the
cap product formulas defined by the partial ordering [v0, · · · , vi, vi+1, · · · , vn] and the
partial ordering (−1)[v0, · · · , vi+1, vi, · · · , vn] are chain homotopic (in the geometrically
controlled category). This follows from a routine calculation . We leave the details to
the reader.

Let m̄ = (0, 0, 1, 1, 2, 2, · · · ) be the lower-middle perversity and n̄ = (0, 1, 1, 2, 2, · · · )
be the upper-middle perversity.

Definition 3.5. Let X be an oriented pseudomanifold of dimension n. We say that X
is a geometrically controlled Poincaré pseudomanifold of dimension n if a duality chain
P : W i

m̄(X)→ W m̄
n−i(X) associated to the fundamental class [X] is a chain equivalence

in the geometrically controlled category.

Remark 3.6. Notice that the only perversity used in the above definition is the lower-
middle perversity m̄.
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Suppose X is a geometrically controlled Poincaré pseudomanifold of dimension n.
Complete the complexes (W ∗

m̄(X), b∗) and (W m̄
∗ (X), b) to complexes of Hilbert spaces,

denoted by (E∗m̄(X), b∗) and (Em̄
∗ (X), b) respectively. Since Ei

m̄(X) and Em̄
i (X) are

identified via the canonical inner product, we shall only write Em̄
i (X) from now on.

The duality map P extends by continuity to a bounded operator P on Em̄
i (X), and the

operator

T =
1

2
(P + (−1)(n−i)iP ∗)

satisfies all three conditions in Definition 2.11. Therefore, the complex of Hilbert spaces

Em̄
0 (X)

b←− Em̄
1 (X)

b←− · · · b←− Em̄
n (X) (1)

together with the duality operator T give rise to an analytically controlled Hilbert-
Poincaré complex over X. We refer the reader to [13, Section 5] for the definition of
analytically controlled complexes.

It remains to see for which pseudomanifolds the duality map P : W i
m̄(X) →

W m̄
n−i(X) is a chain equivalence. Let us first recall the following theorem of Goresky

and MacPherson [12].

Theorem 3.7 (Generalized Poincaré duality [12]). Let X be an oriented pseudo-
manifold of dimension n. If p̄ + q̄ = t̄ = (0, 1, 2, · · · , n − 2), then the duality map
P : W i

p̄(X) → W q̄
n−i(X) is a chain equivalence (in the geometrically controlled cate-

gory). In particular, the induced map on homology P : IHi
p̄(X) → IHp̄

n−i(X) is an
isomorphism for all 0 ≤ i ≤ n.

A special case of the above theorem is that

P : (W i
m̄(X), b∗)→ (W n̄

n−i(X), b)

is a chain equivalence in the geometrically controlled category for all oriented pseudo-
manifold X of dimension n. Hence for a pseudomanifold to be geometrically controlled
Poincaré pseudomanifold, it suffices to show that the canonical inclusion of chain com-
plexes

ι : (W m̄
∗ (X), b) ↪→ (W n̄

∗ (X), b)

is a chain equivalence in the geometrically controlled category. In [24, Theorem 3.2 &
3.4], Siegel showed that the map ι : (W m̄

∗ (X), b) ↪→ (W n̄
∗ (X), b) induces an isomorphism

on homology for Witt spaces. In the following, we shall refine Siegel’s argument to show
that, for every Witt space, ι : (W m̄

∗ (X), b) ↪→ (W n̄
∗ (X), b) is a chain equivalence in the

geometrically controlled category.
Let us recall the definition of Witt spaces. Let X be n-dimensional pseudomanifold.

For x ∈ X, the link of x, denoted by lk(x,X) is unique up to p.l. homeomorphism [22].
Suppose d(x) is the intrinsic dimension of X at x. Then there is a p.l. homeomorphism
lk(x,X) ∼= Sd(x)−1 ∗ L(x), the join of the (d(x) − 1)-dimensional sphere Sd(x)−1 and
some pseudomanifold L(x). The space L(x) is of dimension l(x) = n− d(x)− 1, called
the intrinsic link of x, which is unique up to p.l. homeomorphism (cf. [1]).
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Definition 3.8. Let X be an n-dimensional pseudomanifold. We say X is a Witt
space if

IHm̄
l(x)/2(L(x);Q) = 0

for all x ∈ X such that l(x) ≡ 0 (mod 2), that is, for all x in odd-codimensional
stratum.

We have the following useful proposition due to Siegel.

Proposition 3.9 ([23, Chapter III, Proposition 2.6]). Let X be a stratified pseudo-
manifold, with stratification

Xn ⊃ Xn−1 = Xn−2 ⊃ · · ·X0.

Let L(χi, x) be the link of χi = Xi −Xi−1 at x. Then X is a Witt space if and only if

Hm̄
` (L(χi, x);Q) = 0

for all i = n− (2`+ 1) with ` ≥ 1.

Now we are ready to prove the main technical result in this section.

Proposition 3.10. If X be a Witt space of dimension n ≥ 2, then the canonical
inclusion

ι : (W m̄
∗ (X), b) ↪→ (W n̄

∗ (X), b)

is a chain equivalence in the geometrically controlled category.

Proof. We follow closely the Siegel’s original argument [23, Chapter III, Section 3]. Let
r be the largest integer such that 2r + 1 ≤ n. We define p̄k to be the perversity:

p̄k(c) =

{
m̄(c) = [ c−2

2
] for c ≤ k

n̄(c) = [ c−1
2

] for c > k

where 1 ≤ k ≤ n and 2 ≤ c ≤ n. Here [s] stands for the largest integer that is less
than or equal to s. Since m̄(c) = n̄(c) for c even, we may assume k is odd. Note that
p̄2r+1 = m̄ and p̄1 = n̄. We have the following inclusions of chain complexes:

W m̄
∗ = W p̄2r+1

∗ ⊂ W p̄2r−1
∗ ⊂ · · · ⊂ W p̄3

∗ ⊂ W p̄1
∗ = W n̄

∗ .

To prove the proposition, it suffices to show that

ι : (W p̄2s+3
∗ (X), b) ↪→ (W p̄2s+1

∗ (X), b)

is a chain equivalence for all 0 ≤ s ≤ r−1. We shall prove this by constructing a chain
homotopy Hj : W

p̄2s+1

j → W
p̄2s+1

j+1 and a chain map fj : W
p̄2s+1

j → W
p̄2s+1

j such that

(1) bH +Hb = 1− f , where 1 is the identity map;

(2) fj restricts to 1 on W
p̄2s+3

j and the image of fj lies in W
p̄2s+3

j .

14



· · · W
p̄2s+1

j−1
oo

fj−1

��
Hj−1 &&

W
p̄2s+1

j

bj
oo

fj
��

Hj &&

W
p̄2s+1

j+1

bj+1
oo

fj+1

��

· · ·oo

· · · W
p̄2s+1

j−1
oo W

p̄2s+1

jbj
oo W

p̄2s+1

j+1bj+1

oo · · ·oo

The constructions of the maps H and f are local. In particular, it will follow from
construction that H and f are geometrically controlled.

Observe that p̄2s+1 and p̄2s+3 only differ at codimension 2s+ 3. It follows that

W
p̄2s+3

j = W
p̄2s+1

j

for all j ≤ s+ 1 and j ≥ n− s. We define

fj = 1 and Hj = 0

for all j ≤ s+ 1 and j ≥ n− s. From now on, we assume that s+ 1 < j < n− s.
Recall that χn−(2s+3) is the n− (2s+ 3) dimensional stratum. For each z ∈ W p̄2s+1

j ,
we have

dim(|z| ∩ χn−(2s+3)) ≤ j − (2s+ 3) + p̄2s+1(2s+ 3) = j − s− 2.

If the following stronger inequality holds:

dim(|z| ∩ χn−(2s+3)) ≤ j − (2s+ 3) + p̄2s+3(2s+ 3) = j − s− 3,

then z ∈ W p̄2s+3

j .

Let us fix a direct sum decomposition of W
p̄2s+1

j = W
p̄2s+3

j ⊕ Vj for each s + 1 <

j < n− s. We define Hj(z) = 0 and fj(z) = z for all z ∈ W p̄2s+3

j . Let us fix a basis of
minimal elements B for Vj. To define Hj and fj, it suffices to define Hj and fj for the
basis elements in B.

Note that χn−(2s+3) is the disjoint union of interiors of simplices σ ∈ T , where
dimσ = n − (2s + 3). Recall that here T is the chosen triangulation in the definition
of W p̄

j (X). For each z ∈ B, let Cz be the nonempty set of simplices σ in T for which

dim(|z| ∩ Int(σ)) = j − s− 2.

Now for each σ ∈ Cz, consider the finite set {τi}i∈I of (j − s− 2) simplices in the first
barycentric subdivision of σ satisfying

Int(τi) ⊂ |z| ∩ Int(σ).

The subchain of z consisting of j-simplices in T ′ which intersect Int(σ) in Int(τi) is:

zi = τi ∗ vi

where vi ∈ CT ′
s+1(`k(σ, T ′)), and `k(σ, T ′) is the link of σ in T ′.

We have the following lemma, which is a slight generalization of [23, Chapter III,
Lemma 3.3].
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Lemma 3.11. b(vi) = 0 for all i.

Proof. Decompose z as z = zi + (z − zi). Notice that

bzi = b(τi ∗ vi) = bτi ∗ vi + (−1)j−s−1τi ∗ bvi.

Therefore, |bzi| ∩ Int(σ) contains Int(τi) if and only if bvi 6= 0.
Moreover, since z ∈ W p̄2s+1

j , by definition bz ∈ W p̄2s+1

j−1 . In particular, it follows that

dim(|bz| ∩ χn−(2s+3)) ≤ j − 1− (2s+ 3) + p̄2s+1(2s+ 3) = j − s− 3.

Therefore, |bz| ∩ Int(σ) does not contain Int(τi).
Now consider the decomposition

bzi = −b(z − zi) + bz.

By definition of zi, we see that |b(z − zi)| ∩ Int(σ) does not contain Int(τi).
Combining these observations, we see that |bzi| ∩ Int(σ) does not contains Int(τi).

Therefore, bvi = 0. This finishes the proof.

The canonical simplicial isomorphism of `k(σ, T ′) and `k(σ, T )′ maps vi to a cycle
ṽi ∈ CT ′

s+1(`k(σ, T )′). In particular, we have the complex W m̄
∗ (`k(σ, T )) associated to

the restriction of T to `k(σ, T ). The proof of the following lemma can be found in [23,
Chapter III, Lemma 3.4].

Lemma 3.12. ṽi ∈ W m̄
s+1(`k(σ, T )), for all i.

By hypothesis, X is a Witt space. Proposition 3.9 implies that

IHm̄
s+1(`k(σ, T )) = 0.

So there exists a chain x̃i ∈ W m̄
s+1(`k(σ, T )) such that bx̃i = ṽi. Let xi be the corre-

sponding chain in `k(σ, T ′). We define

wi = (−1)j−s−1τi ∗ xi and wσ =
∑
i∈I

wi.

Note that
bwi = (−1)j−s−1bτi ∗ xi + τi ∗ vi.

Lemma 3.13 ([23, Chapter III, Lemma 3.5]). We have wσ ∈ W p̄2s+1

j+1 (X).

Now repeat the argument for each of the simplices in Cz. We define

Hj(z) =
∑
σ∈Cz

wσ

The map fj : W
p̄2s+1

j → W
p̄2s+1

j is defined by

fj(z) := z − (bj+1Hj(z) +Hj−1bj(z)).

We shall verify that

16



(i) fj restricts to 1 on W
p̄2s+3

j ;

(ii) the image of fj lies in W
p̄2s+3

j .

If z ∈ W
p̄2s+3

j , then bj(z) ∈ W
p̄2s+3

j . Therefore, Hj(z) = 0 and Hj−1(bj(z)) = 0 by
definition. Hence follows part (i).

To see part (ii), we need to consider again the intersection of z with χn−(2s+3).
Recall that Cz is the nonempty set of simplices σ in T for which

dim(|z| ∩ Int(σ)) = j − s− 2.

Let Dz be the nonempty set of simplices σ in T for which

dim(|z| ∩ Int(σ)) = (j − 1)− s− 2.

Now for each σ ∈ Dz, consider the finite set {ηk}k∈K of (j− s−3) simplices in the first
barycentric subdivision of σ satisfying

Int(ηk) ⊂ |z| ∩ Int(σ).

The subchain of z consisting of j-simplices in T ′ which intersect Int(σ) in Int(ηk) is:

yk = ηk ∗ uk

where uk ∈ CT ′
s+2(`k(σ, T ′)). In the construction for Hj−1, we see that the terms that

are relevant for the definition of Hj−1(bz) are

(bτi) ∗ vi coming from bzi = (bτi) ∗ vi,

and

(−1)j−s−2ηk ∗ (buk) coming from byk = (bηk) ∗ uk + (−1)j−s−2ηk ∗ buk.

We define
w′i = (−1)j−s−2(bτi) ∗ xi and w′σ =

∑
i∈I

w′i;

and
w′′k = (−1)j−s−2(−1)j−s−2ηk ∗ uk = ηk ∗ uk and w′′σ =

∑
i∈I

w′′k .

It is not difficult to verify that

Hj−1(bz) =
∑
σ∈Cz

w′σ +
∑
σ∈Dz

w′′σ.

Observe that dim(|Hj−1(bz)| ∩ χn−(2s+3)) ≤ j − s− 3.
Recall that by the construction of wσ, we have

dim(|z − bwσ| ∩ Int(σ)) ≤ j − s− 3,
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hence it follows that

dim(|z − bHj(z)| ∩ χn−(2s+3)) ≤ j − s− 3. (2)

Since fj(z) = (z − bHj(z))−Hj−1b(z), we see that

dim(|fj(z)| ∩ χn−(2s+3)) ≤ j − s− 3.

Moreover, notice that bfj(z) = (bz) − bHj−1(bz). Apply formula (2) to bz. It follows
immediately that

dim(|bfj(z)| ∩ χn−(2s+3)) ≤ (j − 1)− s− 3.

As a consequence, fj(z) ∈ W p̄2s+3

j . This proves part (ii).
Observe that the maps Hj and fj are geometrically controlled by construction. This

completes the proof of the proposition.

To summarize, we have the following main theorem of this section.

Theorem 3.14. Every n-dimensional oriented Witt space X is a geometrically con-
trolled Poincaré pseudomanifold of dimension n, that is, the duality chain P : (W ∗

m̄(X), b∗)→
(W m̄

n−∗(X), b) associated to the fundamental class [X] is a chain equivalence in the ge-
ometrically controlled category.

4 Higher signatures of Witt spaces

In this section, we define higher signatures for Witt spaces and prove some invariance
properties.

Let us first recall some standard definitions from coarse geometry. We refer the
reader to [21] [28] for more details. Let X be a proper metric space. That is, every
closed ball in X is compact. An X-module is a separable Hilbert space equipped with
a ∗-representation of C0(X), the algebra of all continuous functions on X which vanish
at infinity. An X-module is called nondegenerate if the ∗-representation of C0(X) is
nondegenerate. An X-module is said to be ample if no nonzero function in C0(X) acts
as a compact operator.

Definition 4.1. Let HX be a X-module and T a bounded linear operator acting on
HX .

(i) The propagation of T is defined to be sup{d(x, y) | (x, y) ∈ Supp(T )}, where
Supp(T ) is the complement (in X × X) of the set of points (x, y) ∈ X × X for
which there exist f, g ∈ C0(X) such that gTf = 0 and f(x) 6= 0, g(y) 6= 0;

(ii) T is said to be locally compact if fT and Tf are compact for all f ∈ C0(X).

Definition 4.2. Let HX be an ample nondegenerate X-module and B(HX) the set of
all bounded linear operators on HX .
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(i) The Roe algebra of X, denoted by C∗(X), is the C∗-algebra generated by all
locally compact operators with finite propagations in B(HX).

(ii) The localization algebra of X, denoted by C∗L(X), is the C∗-algebra generated by
all bounded and uniformly continuous functions f : [0,∞) → C∗(X) such that
propagation of f(t)→ 0, as t→∞.

Now suppose X̃ is a Γ-covering of X. Let HX̃ be a X̃-module equipped with a

covariant unitary representation of Γ. If we denote the representation of C0(X̃) by ϕ
and the representation of Γ by π, this means

π(γ)(ϕ(f)v) = ϕ(fγ)(π(γ)v),

where f ∈ C0(X̃), γ ∈ Γ, v ∈ HX̃ and fγ(x) = f(γ−1x). In this case, we call (HX̃ ,Γ, ϕ)
a covariant system.

Definition 4.3. With the same notation above, we denote by C[X̃]Γ the ∗-algebra
of all Γ-invariant locally compact operators with finite propagations in B(HX̃). We

define C∗(X̃)Γ to be the completion of C[X̃]Γ in B(HX̃). The Γ-invariant version of

the localization algebra, denoted by C∗L(X̃)Γ, is defined similarly.

If the action of Γ on X̃ is cocompact, that is, if X is compact, then it is known that
C∗(X̃)Γ is ∗-isomorphic to C∗r (Γ) ⊗ K, where C∗r (Γ) is the reduced group C∗-algebra
of Γ and K is the algebra of all compact operators. In particular, it follows that
Ki(C

∗(X̃)Γ) ∼= Ki(C
∗
r (Γ)). Moreover, a theorem of Yu shows that there is a natural

isomorphism Ki(C
∗
L(X̃)Γ) ∼= KΓ

i (X̃) = Ki(X) [28, Theorem 3.2].
Now suppose X is a closed oriented Witt space of dimension n. By Theorem 3.14

above, X is a geometrically controlled Poincaré pseudomanifold, that is, the duality
chain P : (W ∗

m̄(X), b∗) → (W m̄
n−∗(X), b) associated to the fundamental class [X] is a

chain equivalence in the geometrically controlled category. By the discussion in Section
3, the duality map P extends by continuity to a bounded operator P on Em̄

i (X), and
the operator

T =
1

2
(P + (−1)(n−i)iP ∗)

satisfies all three conditions in Definition 2.11. Recall that Em̄
∗ (X) is the Hilbert

completion of W m̄
∗ (X). Then the complex of Hilbert spaces

Em̄
0 (X)

b←− Em̄
1 (X)

b←− · · · b←− Em̄
n (X) (3)

together with the duality operator T give rise to an analytically controlled Hilbert-
Poincaré complex over X. We refer the reader to [13, Section 5] for the definition of
analytically controlled complexes.

Now let X̃ be the Γ-covering of X as above. Apply Theorem 3.14 to X̃. We see that
the duality chain P : (W ∗

m̄(X̃), b∗)→ (W m̄
n−∗(X̃), b) associated to the fundamental class

[X̃] is a chain equivalence in the category of geometrically controlled Γ-equivariant
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maps. Now a geometrically controlled Γ-equivariant Poincaré complex can be com-
pleted to yield an equivariantly analytically controlled Hilbert-Poincaré complex:

Em̄
0 (X̃)

b←− Em̄
1 (X̃)

b←− · · · b←− Em̄
n (X̃)

with the duality map T̃ defined in the same as that of the unequivariant case above.
Before we define the notion of higher signature, let us briefly review the classical

signature for Witt spaces in the current context. Recall the definition of signature
for Hilbert-Poincaré complexes from Definition 2.13. In the case of an analytically
controlled Hilbert-Poincaré complex

Em̄
0 (X)

b←− Em̄
1 (X)

b←− · · · b←− Em̄
n (X)

over a closed Witt space X of dimension n, its signature, denoted sig(X), lies in Kn(K).
Recall that Kn(K) = Z when n is even and 0 when n is odd. It is not difficult to see
that sig(X) agrees with the classical definition of signature for Witt spaces (cf. [13,
Proposition 3.9]).

Remark 4.4. If X is a closed Witt space of dimension 4k, then the classical signature
of X is defined to be the signature of the symmetric bilinear form:

∩ : IHm̄
2k(X)× IHm̄

2k(X)→ Q.

Definition 4.5. Let X be a closed oriented Witt space of dimension n. Recall that
every Γ-covering X̃ of X is determined by a continuous map f : X → BΓ, where BΓ
is the classifying space of Γ. The higher signature of X̃ over X is defined to be the
signature class of the analytically controlled Γ-equivariant Hilbert-Poincaré complex:

Em̄
0 (X̃)

b←− Em̄
1 (X̃)

b←− · · · b←− Em̄
n (X̃).

This signature class is an element in Kn(C∗r (Γ) ⊗ K) = Kn(C∗r (Γ)) and is denoted by
sigΓ(X, f).

The higher signature of X, denoted by sigΓ(X), is defined to the higher signature
of the universal cover of X, where Γ = π1(X) in this case. Now we shall prove some
natural invariance properties of higher signatures. Before we state the theorem, let us
recall some standard definitions.

Definition 4.6. (1) Let X1 and X2 are two closed oriented Witt spaces with continu-
ous maps f1 : X1 → BΓ and f2 : X2 → BΓ. We say X1 and X2 are Γ-equivariantly
cobordant if there exist a Witt space with boundary W and a continuous map
f : W → BΓ such that ∂W = X1 t (−X2), and f |X1 = f1 and f |X2 = f2.

(2) Suppose X and Y are two stratified spaces. A continuous map ϕ : X → Y is called
stratum preserving if, for each stratum S of Y , the inverse image ϕ−1(S) is a union
of strata of X. Such a stratum preserving map is called codimension preserving if,
for each stratum of S of Y , we have

codim ϕ−1(S) = codim S.

A stratified homotopy equivalence between X and Y is a homotopy equivalence in
the category of codimension preserving maps.
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Theorem 4.7. (i) Higher signatures of Witt spaces are invariant under Witt cobor-
dism. More precisely, suppose X1 and X2 are two closed oriented Witt spaces
with continuous maps f1 : X1 → BΓ and f2 : X2 → BΓ. If X1 and X2 are
Γ-equivariantly cobordant, then

sigΓ(X1, f1) = sigΓ(X2, f2)

in Kn(C∗r (Γ)), where n = dimX1 = dimX2.

(ii) Higher signatures of Witt spaces are invariant under stratified homotopy equiva-
lence. More precisely, X and Y are two closed oriented Witt spaces, and f : Y →
BΓ is a continuous map. If ϕ : X → Y is a stratified homotopy equivalence, then

sigΓ(X, f ◦ ϕ) = sigΓ(Y, f).

Proof. (i) Let W be a Witt cobordism between X1 and X2. Then the pair (W,X1 t
(−X2)) together with the relevant maps to BΓ give rise to a geometrically con-
trolled Poincaré pair in the sense of [14, Section 3.2]. Now the statement follows
immediately from [13, Theorem 7.6].

(ii) Without loss of generality, we assume ϕ is simplicial with respect to some trian-
gulations of X and Y . The map ϕ induces a geometrically controlled homotopy
equivalence between the associated geometrically controlled Poincaré complexes
of X and Y . Now the statement follows immediately from [13, Theorem 4.3].

5 K-homology classes of signature operators

In this section, for each closed oriented Witt space X, we shall construct the K-
homology class of its signature operator. The image of this K-homology class under
the Baum-Connes assembly map is the higher signature of X from the previous section.

Recall that the Baum-Connes assembly map takes each K-homology class of X to
its higher index:

µ : KΓ
i (X)→ Ki(C

∗
r (Γ)).

In the case where X = EΓ is the universal space for Γ-proper actions, the Baum-Connes
conjecture states that µ is an isomorphism [4][5].

Recall that we have Ki(C
∗
L(X)) ∼= Ki(X), where C∗L(X) is the localization algebra

of X (see Definition 4.2). To construct the K-homology class of the signature operator,
we shall construct its corresponding element in Kn(C∗L(X)), where n = dimX.

Recall that in the construction of the localization algebra C∗L(X) of X, we need to
choose a nondegenerate X-module. In this section, we shall fix an explicit choice of
nondegenerate X-module that suits best with the purpose of our constructions.

Let X be closed oriented Witt space of dimension n. Recall the construction of
W m̄
i (X) from Section 2.3. Here m̄ is the lower middle perversity. Denote the first
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barycentric subdivision of T by T ′. Consider the stratification of X given by the
skeleton of T ,

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.

Define Rm̄
i to be the subcomplex of T ′ consisting of all simplices which are (p̄, i)-

allowable with respect to this stratification. W p̄
i (X) is defined to be the subgroup of

CT ′
i (Rp̄

i ) consisting of those simplicial i-chains with boundary supported on Rp̄
i−1.

Let us define H0 =
⊕

kW
m̄
k (X)⊗ C. Fix a basis Bk = {µki } consisting of minimal

elements for W p̄
k (X) (see Appendix A for details). Each minimal element µki of W p̄

k (X)
is supported on the star of some vertex vki in X. We define an X-module structure on
H0 as follows. Let every function f ∈ C(X) act on H0 by

f · µki = f(vki )µki .

5.1 Refinement map

In this subsection, let us describe a refinement procedure for a given triangulation
T . This refinement procedure produces a particular subdivision of T , denoted by AT
such that all successive refinements AnT have bounded geometry, where the bound is
uniform respect to n ∈ N.

Let us recall the notion of typed simplicial complexes (cf. [6] [19]).

Definition 5.1. Suppose X is a simplicial complex of dimension n. Let X0 be the
set of vertices of X. A type on X is a map ϕ : X0 → {0, 1, · · · , n} such that for any
simplex ω ∈ X, the images by ϕ of the vertices of ω are pairwise distinct. A simplicial
complex equipped with a type is said to be typed.

Given any simplicial complex X of dimension n, we denote its barycentric subdivi-
sion by Y . Then Y admits a type. Indeed, Y is the set of totally ordered subsets of
X, that is,

Y k = {(σ0, · · · , σk) | σj ∈ X and σi is a face of σi+1}.

Now the dimension function, which maps each barycenter of a simplex of X to the
dimension of that simplex, is a type on Y .

Now suppose X is a typed simplicial complex of dimension n. In particular, this
gives a consistent way of ordering the vertices of each simplex inX according to the type
map. Therefore, each k-simplex of X can be canonically identified with the standard
k-simplex ∆k. Now to define our refinement procedure, it suffices to describe certain
subdivisions of the standard simplices so that the number of simplices containing a
vertex remains uniformly bounded for all successive subvisions. One way to achieve
this is by the so-called standard subdivision [27, Appendix II.4]. In below, we briefly
recall the construction of standard subdivision, and refer the reader to [27, Appendix
II.4] for more details.

Let σ = [v0, v1, · · · , vk] be a standard simplex with its vertices given in the order
shown. Set

vij =
1

2
vi +

1

2
vj, i ≤ j;
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in particular, vii = vi. These are the vertices of the standard subdivision of σ, denoted
Sσ. Define a partial ordering on these vertices by setting

vij ≤ vkl if k ≤ i and j ≤ l.

Now the simplices of Sσ are all those formed from the vij which are in increasing order.
Moreover, each simplex in Sσ naturally inherits an ordering of vertices from the above
partial ordering of vij. It is not difficult to verify that Sσ carries a natural type by
mapping vij 7→ (j − i).

To summarize, given a typed simplicial complex X of dimension n, we apply the
above standard subdivision procedure (consistently) to each n-simplex of X. We call
the resulting simplicial complex the standard subdivision of X, denoted by SX. Note
that SX is also typed.

5.2 K-homology class

Let A be the refinement map from above and AT ′ be the resulting refinement of the
triangulation T ′. Moreover, the corresponding group W p̄

i (X) with respect to AT ′ will
be denoted by W p̄

i (AX). We define

H1 =
⊕
k

W m̄
k (AX)⊗ C.

Similarly, we fix a basis of minimal elements of H1, and endow H1 with an X-module
structure accordingly.

Repeat the above process, and define

Hj =
⊕
k

W m̄
k (AjX)⊗ C.

Define H to be the `2-completion of
⊕∞

j=0Hj. Then H inherits an X-module structure
from those of Hk. Moreover, it is not difficult to see H is an ample nondegenerate
X-module.

By Theorem 3.14, each Hk, together with the maps b, b∗ and T , gives rises to a
geometric Hilbert-Poincaré complex of X. Let Bk and Sk be the operators on Hk

corresponding to the operators B and S from Section 2.4. By construction, Bk and Sk
have finite propagation. Moreover, Bk±Sk are invertible for each k ≥ 0. The following
lemma shows that in fact Bk ± Sk are uniformly bounded below for all k ≥ 0.

Lemma 5.2. There exist constants ε > 0 and C > 0 such that

ε < ‖Bk ± Sk‖Hk
< C

for all k.

Proof. Consider the disjoint union of countably many copies of X, denoted by
∐

j Xj,

where Xj = X endowed with the triangulation AjT ′. The stratification of each Xj

remains the same, and is given by the skeleton of T :

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.
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Note that
∐

j Xj has bounded geometry under the above simplicial structure. Let

{W m̄
k (AjX)} be the corresponding geometric Hilbert-Poincaré complex over Xk. Then∐

j Hj is a geometric Hilbert-Pincaré complex over
∐

j Xj. Let H be the `2 completion
of
∐

j Hj. Then by the discussion in Section 2.5, the operators∐
j

(Bj + Sj) and
∐
j

(Bj − Sj)

are bounded and invertible [13, Lemma 3.5]. In particular, there exist ε > 0 and C
such that

ε < ‖
∐
j

(Bj + Sj)‖H < C and ε < ‖
∐
j

(Bj − Sj)‖H < C.

It follows that ε < ‖Bj ± Sj‖Hj
< C for all j ≥ 0.

5.2.1 Odd case

Let p(x) be a polynomial on [ε, C] ∪ [−C,−ε] such that

sup
x∈[ε,C]

|f(x)− p(x)| < 1

C
.

Then ‖p(Bj−Sj)− (Bj−Sj)−1‖ < 1
‖Bj−Sj‖ , which implies that p(Bj−Sj) is invertible.

Moreover, the element
(Bj + Sj) · p(Bj − Sj)

has finite propagation. Since the propagation of Bj − Sj goes to zero as j goes to ∞,
we have that the propagation of (Bj +Sj) ·p(Bj−Sj) goes to zero, as j goes to infinity.

The refinement map A induces a controlled chain homotopy equivalence

Aj : (Hj, b)→ (Hj+1, b).

Observe that the propagation of Aj goes to zero, as j → ∞. Moreover, AjSjA∗j
is controlled chain homotopic to Sj+1. We shall use these controlled chain homotopy
equivalences to construct a norm-bounded and uniformly continuous path that connects
all (Bj + Sj) · p(Bj − Sj). The resulting path represents a class in K1(C∗L(X)), which
is precisely the K-homology class of the signature operator of X.

Consider the duality operator (−Sj) ⊕ Sj+1 on the chain complex Hj ⊕Hj+1. We
shall construct a continuous path of invertible elements (with controlled propagations)
connecting [(

Bj

Bj+1

)
+
(
−Sj

Sj+1

)]
· p
[(

Bj

Bj+1

)
−
(
−Sj

Sj+1

)]
to the identity operator ( 1 0

0 1 ). The construction is adapted from [13, Section 4]. First
consider the path of duality operators(

−Sj 0
0 (1− t)Sj+1 + tAjSjA∗j

)
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which connects the duality operator (−Sj)⊕ Sj+1 on the chain complex Hj ⊕Hj+1 to
the operator (−Sj)⊕AjSjA∗j . Following this, the path of duality operators(

− cos(t)Sj sin(t)SjA∗j
sin(t)AjSj cos(t)AjSjA∗j

)
, t ∈ [0, π/2],

connecting (−Sj)⊕AjSjA∗j to
(

0 SjA∗j
AjSj 0

)
.

By using these paths of duality operators, we see that[(
Bj

Bj+1

)
+
(
−Sj

Sj+1

)]
· p
[(

Bj

Bj+1

)
−
(
−Sj

Sj+1

)]
is connected to[(

Bj

Bj+1

)
+
(

0 SjA∗j
AjSj 0

)]
· p
[(

Bj

Bj+1

)
−
(

0 SjA∗j
AjSj 0

)]
by a norm-continuous path of invertibles.

Now observe that the duality operator
(

0 SjA∗j
AjSj 0

)
is connected to its additive

inverse
(

0 −SjA∗j
−AjSj 0

)
by the path of duality operators(

0 exp(it)SjA∗j
exp(−it)AjSj 0

)
, t ∈ [0, π].

To proceed, we need the following lemma.

Lemma 5.3. The elements

E±j (t) =

(
Bj

Bj+1

)
±
(
−Sj 0

0 (1− t)Sj+1 + tAjSjA∗j

)
,

F±j (t) =

(
Bj

Bj+1

)
±
(
− cos(t)Sj sin(t)SjA∗j
sin(t)AjSj cos(t)AjSjA∗j

)
and

G±j (t) =

(
Bj

Bj+1

)
±
(

0 exp(it)SjA∗j
exp(−it)AjSj 0

)
are invertible. Moreover, there exists a constant ε and C such that

ε ≤ ‖E±j (t)‖, ‖F±j (t)‖, ‖G±j (t)‖ ≤ C

for all j and t.

Proof. The proof uses the same idea from Lemma 5.2.
Consider the map

A =
∐
j≥0

Aj :
∐
j≥0

Xj →
∐
j≥1

Xj
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defined by A|Xj
= Aj. Similarly, we define

S =
∐
j≥0

Sj and S ′ =
∐
j≥1

Sj;

B =
∐
j≥0

Bj and B′ =
∐
j≥1

Bj;

We have that ASA∗ is controlled chain homotopic to S ′. Now define the paths of
operators

E+(t) =

(
B

B′

)
+

(
−S 0
0 (1− t)S ′ + tASA∗

)
.

By the discussion in Section 2.5, the operators E+(t) are bounded and invertible [13,
Lemma 3.5]. Therefore there exists a constant ε and C such that

ε ≤ ‖E+(t)‖ ≤ C.

The same argument applies to the other terms. Since there are only a finite number of
paths, this finishes the proof.

Without loss of generality, we assume that we have chosen ε and C as in the above
lemma. It follows that the element

v0 =
[(

Bj

Bj+1

)
+
(

0 SjA∗j
AjSj 0

)]
· p
[(

Bj

Bj+1

)
−
(

0 SjA∗j
AjSj 0

)]
is connected to

v1 =
[(

Bj

Bj+1

)
+
(

0 SjA∗j
AjSj 0

)]
· p
[(

Bj

Bj+1

)
+
(

0 SjA∗j
AjSj 0

)]
by the path

vt =
[(

Bj

Bj+1

)
+
(

0 SjA∗j
AjSj 0

)]
· p
[(

Bj

Bj+1

)
−
(

0 exp(it)SjA∗j
exp(−it)AjSj 0

)]
.

Notice that, since p(x) is approximating the function f(x) = x−1, the element v1 in
this path is very close to the identity operator ( 1 0

0 1 ) . More precisely, the linear path
between v1 and ( 1 0

0 1 ) is a path of invertible elements connecting v1 and ( 1 0
0 1 ) .

To summarize, we have obtained a norm-continuous path of invertible elements that
connects [(

Bj

Bj+1

)
+
(
−Sj

Sj+1

)]
· p
[(

Bj

Bj+1

)
−
(
−Sj

Sj+1

)]
=
(

(Bj−Sj)·p(Bj+Sj) 0

0 (Bj+1+Sj+1)·p(Bj+1−Sj+1)

)
to the identity operator ( 1 0

0 1 ). In particular, by multiplying this path by the element(
(Bj + Sj) · p(Bj − Sj) 0

0 1

)
,
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we have a path of invertible elements connecting
(

(Bj+Sj)·p(Bj−Sj) 0
0 1

)
to(

(Bj+Sj)·p(Bj−Sj)(Bj−Sj)·p(Bj+Sj) 0

0 (Bj+1+Sj+1)·p(Bj+1−Sj+1)

)
.

Observe that again the entry

(Bj + Sj) · p(Bj − Sj)(Bj − Sj) · p(Bj + Sj)

in the last element is connected to the identity operator by a linear path of invertible
elements. Therefore, combining these paths together, we obtain a path of invertible
elements, denoted by Ut, t ∈ [j, j + 1], connecting

Uj =

(
(Bj + Sj) · p(Bj − Sj) 0

0 1

)
to

Uj+1 =

(
1 0
0 (Bj+1 + Sj+1) · p(Bj+1 − Sj+1)

)
.

Let cj be the maximum of the propagations of Bj, Sj and Aj. By construction, the
propagation of Ut is uniformly bounded by N · cj for all t ∈ [j, j + 1]. Here N is a
universal constant that only depends on the degree of the polynomial p(x).

Now view each Ut, t ∈ [j, j + 1], as an invertible operator on H by making it act
as the identity operator on Hi for i 6= j, j + 1. By putting all the intervals [j, j + 1]
together, we obtain a bounded uniformly continuous path of invertible elements

U : [0,∞)→ C∗(X)+

such that the propagation of Ut goes to zero, as t→∞. Here C∗(X)+ is the unitization
of C∗(X).

Definition 5.4. The K-homology class of the signature operator of X is defined to be
the K-theory class of the path U in K1(C∗L(X)). Let us denote this K-homology class
by [Dsig] from now on.

5.2.2 Even case

The even case is similar. We shall only point out a few key points and skip most of the
details. Recall that the signature class of X is defined to be the element in K0(C∗(X))
determined by the formal difference [P+]− [P−] of the positive projections of Bj + Sj
and Bj − Sj. In other words, the signature class of X is the formal difference

g(Bj + Sj)− g(Bj − Sj)

where g(x) is the function on [ε, C]∪[−C,−ε] such that g(x) ≡ 1 on [ε, C] and g(x) ≡ 0
on [−C,−ε]. In order to have good control over the propagation, we approximate g
sufficiently well by a polynomial h(x) on [ε, C]∪[−C,−ε]. Notice that, h2(x)−h(x) 6= 0
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in general. As a result, h(Bj ± Sj) are not projections. However, by choosing h
sufficiently close to g, we have

‖h(Bj ± Sj)2 − h(Bj ± Sj)‖ < δ

with δ sufficiently small. In other words, h(Bj ± Sj) are δ-quasi-projections. Now
proceed as in the odd case (with obvious modifications), we obtain a bounded uniformly
continuous path of δ-quasi-projections

Q : [0,∞)→ C∗(X)

such that the propagation of Qt goes to zero, as t→∞. In particular, Q gives rise to a
δ-quasi-projection in C∗L(X), which in turn determines a K-theory class in K0(C∗L(X))
by the standard holomorphic functional calculus.

Definition 5.5. The K-homology class of the signature operator on X is defined to be
the K-theory class in K0(C∗L(X)) determined by Q. Again we denote this K-homology
class by [Dsig].

5.2.3 Equivariant case

The case of coverings of Witt spaces is completely similar. Suppose X̃ is a Γ-covering
of X, where Γ is a discrete group. Our primary example is X̃ is the universal cover of
X and Γ = π1(X).

We proceed exactly the same as the non-equivariant case above, but this time on
the space X̃. Notice that all operators are invariant under the action of Γ. Now in the
odd case, we obtain a bounded uniformly continuous function

Ũ : [0,∞)→ (C∗(X̃)Γ)+

such that the propagation of Ũt goes to zero, as t→∞. So Ũ determines a K-theory
class in K1(C∗L(X̃)Γ). Moreover, this class coincides with the K-homology class [Dsig]
in K1(C∗L(X)), after the natural identifications

K1(C∗L(X̃)Γ) ∼= K1(C∗L(X)) ∼= K1(X).

The even case is similar.

5.3 Assembly map

Recall that the evaluation map

ev : C∗L(X)Γ → C∗(X)Γ

f(t) 7→ f(0)

induces a homomorphism at the level of K-theory:

ev∗ : Ki(C
∗
L(X)Γ)→ Ki(C

∗(X)Γ),
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where i = 0, 1. The ev∗ in fact coincides with the Baum-Connes assembly map
µ : Ki(X) → Ki(C

∗
r (Γ)), with the natural identifications Ki(C

∗
L(X)Γ) ∼= Ki(X) and

Ki(C
∗(X)Γ) ∼= Ki(C

∗
r (Γ)). In particular, it follows from our discussion above that

µ[Dsig] = sigΓ(X) ∈ Kn(C∗r (Γ)),

where n = dimX. Let us summarize this in the following proposition.

Proposition 5.6. For each closed oriented Witt space of dimension n, we have

µ[Dsig] = sigΓ(X) ∈ Kn(C∗r (Γ)).

A Minimal elements in W p̄
i (X)

The purpose of this section is to show that it is always possible to choose a basis {xα}
of W p̄

i (X) such that xα are uniformly bounded in the following sense. Let ]xα be the
number of simplices in xα. One can always choose {xα} such that ]xα is uniformly
bounded. In particular, apply the refinement map A repeatedly, one can choose a
basis of AW p̄

i (X) such that the supports of these basis elements shrink uniformly.
Given a pseudomanifold X, let T be a triangulation of X. Recall the construction

of W p̄
i from Section 2.3. Denote the first barycentric subdivision of T by T ′. Consider

the stratification of X given by the skeleton of T ,

X = |Tn| ⊃ Σ = |Tn−2| ⊃ |Tn−3| ⊃ · · · ⊃ |T0|.

Define Rp̄
i to be the subcomplex of T ′ consisting of all simplices which are (p̄, i)-

allowable with respect to this stratification. W p̄
i (X) is defined to be the subgroup

of CT ′
i (Rp̄

i ) consisting of those simplicial i-chains with boundary supported on Rp̄
i−1.

Denote an element of W p̄
k (X) by a sum

∑
i∈I aiσi for some finite index set I and

ai ∈ Z. Here σi is a k-simplex of the triangulation T ′. Without loss of generality,
we assume that the geometric support of

∑
i∈I aiσi in X is connected. Moreover, by

reversing the orientation of σi if necessary, we assume that ai > 0. Let σ be a summand
of the sum

∑
i∈I aiσi.

Definition A.1. An element
∑

i∈I aiσi of W p̄
k (X) with ai > 0 is called minimal if it

cannot be written as a sum ∑
i∈I

αiσi +
∑
i∈I

βiσi

such that

(i) αi, βi ≥ 0 and αi + βi = ai;

(ii) both
∑

i∈I αiσi and
∑

i∈I βiσi are in W p̄
k (X).

Clearly, the support of each minimal element is connected.

Lemma A.2. There exists a universal constant ck > 0 such that |I| ≤ ck for all
minimal elements

∑
i∈I aiσi of W p̄

k (X). Here ck only depends on k.
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Proof. Choose a summand σe of
∑

i∈I aiσi. Observe that, up to orientation, σe is a
simplex of the form [v0, · · · vk], where vi is the barycenter of some simplex ∆vi in T and
∆vi is a sub-simplex of ∆vi+1

for all 0 ≤ i ≤ k − 1. Let us write σ̃ = [v0, · · · vk]. Then
σe = ±σ̃.

Claim. The face [v1, · · · , vk] is supported on Rp̄
k−1.

Let us assume the opposite, that is, [v1, · · · , vk] is not supported on Rp̄
k−1. This

implies that there exists j such that

dim([v1, · · · , vk] ∩Xn−j) > k − 1− j + pj.

In particular, dim([v1, · · · , vk] ∩ Xn−j) ≥ 0 and we have that vs ∈ Xn−j for some
1 ≤ s ≤ k. Since vs is the barycenter of ∆vs , it follows that ∆vs is contained in Xn−j.
In particular, this implies that v0 lies in Xn−j as well. Therefore, we have

dim(σ̃ ∩Xn−j) = dim([v1, · · · , vk] ∩Xn−j) + 1 > k − j + pk,

which contradicts with the assumption that σ̃ ∈ Rp̄
k. This proves the claim.

Now let us prove the lemma by induction.

(1) If all the faces [v0, v1, · · · , v̂`, · · · , vk] of σ̃ lie in Rp̄
k−1, then σ̃ (and equivalently σe)

is an element of W p̄
k (X). Then

∑
i∈I

aiσi =

[∑
i 6=e∈I

aiσi + (ae − 1)σe

]
+ σe.

This contradicts with the assumption that
∑

i∈I aiσi is minimal. So at least one
face, say [v0, v1, · · · , v̂`, · · · , vk] with ` > 0, is not supported on Rp̄

k−1.

(2) By assumption, ∂(
∑

i∈I aiσi) is supported on Rp̄
k−1. It follows that there exists an-

other summand ω 6= σe such that a face of ω cancels out with [v0, v1, · · · , v̂`, · · · , vk].
Let us write

ω = ±[w0, w1, · · · , wk],
where again wj is the barycenter of some simplex ∆wj

of T and ∆wj
is contained

in ∆wj+1
for all 0 ≤ j ≤ k − 1. Then clearly we have w0 = v0. In particular, it

follows that ω and σe both lie in the star of the vertex v0.

Repeat the above steps, due to minimality of
∑

i∈I aiσi, it follows that all simplices
σi in the summation contain the vertex v0. In particular, they are all contained in
the star of v0. Now because X has bounded geometry, the number of k-simplices in
the star of a vertex is uniformly bounded by some constant, say, ck. This finishes the
proof.

We have the following immediate corollary.

Corollary A.3. W p̄
k (X) has a basis consisting of minimal elements, each of which is

supported on the star of a vertex.
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